Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 15(10)2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37776517

RESUMEN

The detection of invasive pathogens is critical for host immune defense. Cell surface receptors play a key role in the recognition of diverse microbe-associated molecules, triggering leukocyte recruitment, phagocytosis, release of antimicrobial compounds, and cytokine production. The intense evolutionary forces acting on innate immune receptor genes have contributed to their rapid diversification across plants and animals. However, the functional consequences of immune receptor divergence are often unclear. Formyl peptide receptors (FPRs) comprise a family of animal G protein-coupled receptors which are activated in response to a variety of ligands including formylated bacterial peptides, pathogen virulence factors, and host-derived antimicrobial peptides. FPR activation in turn promotes inflammatory signaling and leukocyte migration to sites of infection. Here we investigate patterns of gene loss, diversification, and ligand recognition among FPRs in primates and carnivores. We find that FPR1, which plays a critical role in innate immune defense in humans, has been lost in New World primates. Amino acid variation in FPR1 and FPR2 among primates and carnivores is consistent with a history of repeated positive selection acting on extracellular domains involved in ligand recognition. To assess the consequences of FPR divergence on bacterial ligand interactions, we measured binding between primate FPRs and the FPR agonist Staphylococcus aureus enterotoxin B, as well as S. aureus FLIPr-like, an FPR inhibitor. We found that few rapidly evolving sites in primate FPRs are sufficient to modulate recognition of bacterial proteins, demonstrating how natural selection may serve to tune FPR activation in response to diverse microbial ligands.


Asunto(s)
Receptores de Formil Péptido , Staphylococcus aureus , Humanos , Animales , Receptores de Formil Péptido/genética , Receptores de Formil Péptido/metabolismo , Secuencia de Aminoácidos , Ligandos , Staphylococcus aureus/genética , Bacterias/genética , Bacterias/metabolismo , Receptores Inmunológicos , Primates/metabolismo
2.
Mol Biol Evol ; 38(6): 2273-2284, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33528563

RESUMEN

Molecular studies of host-pathogen evolution have largely focused on the consequences of variation at protein-protein interaction surfaces. The potential for other microbe-associated macromolecules to promote arms race dynamics with host factors remains unclear. The cluster of differentiation 1 (CD1) family of vertebrate cell surface receptors plays a crucial role in adaptive immunity through binding and presentation of lipid antigens to T-cells. Although CD1 proteins present a variety of endogenous and microbial lipids to various T-cell types, they are less diverse within vertebrate populations than the related major histocompatibility complex (MHC) molecules. We discovered that CD1 genes exhibit a high level of divergence between simian primate species, altering predicted lipid-binding properties and T-cell receptor interactions. These findings suggest that lipid-protein conflicts have shaped CD1 genetic variation during primate evolution. Consistent with this hypothesis, multiple primate CD1 family proteins exhibit signatures of repeated positive selection at surfaces impacting antigen presentation, binding pocket morphology, and T-cell receptor accessibility. Using a molecular modeling approach, we observe that interspecies variation as well as single mutations at rapidly-evolving sites in CD1a drastically alter predicted lipid binding and structural features of the T-cell recognition surface. We further show that alterations in both endogenous and microbial lipid-binding affinities influence the ability of CD1a to undergo antigen swapping required for T-cell activation. Together these findings establish lipid-protein interactions as a critical force of host-pathogen conflict and inform potential strategies for lipid-based vaccine development.


Asunto(s)
Antígenos CD1/genética , Evolución Molecular , Lípidos/inmunología , Modelos Moleculares , Primates/genética , Animales , Familia de Multigenes , Primates/inmunología , Selección Genética
3.
Elife ; 62017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29185419

RESUMEN

Asymmetric division generates cellular diversity by producing daughter cells with different fates. In animals, the mitotic spindle aligns with Par complex polarized fate determinants, ensuring that fate determinant cortical domains are bisected by the cleavage furrow. Here, we investigate the mechanisms that couple spindle orientation to polarity during asymmetric cell division of Drosophila neuroblasts. We find that the tumor suppressor Discs large (Dlg) links the Par complex component atypical Protein Kinase C (aPKC) to the essential spindle orientation factor GukHolder (GukH). Dlg is autoinhibited by an intramolecular interaction between its SH3 and GK domains, preventing Dlg interaction with GukH at cortical sites lacking aPKC. When co-localized with aPKC, Dlg is phosphorylated in its SH3 domain which disrupts autoinhibition and allows GukH recruitment by the GK domain. Our work establishes a molecular connection between the polarity and spindle orientation machineries during asymmetric cell division.


Asunto(s)
División Celular Asimétrica , Proteínas de Drosophila/metabolismo , Drosophila , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Proteína Quinasa C/metabolismo , Huso Acromático/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Células Cultivadas , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...